reviews

I built a $5,000 Raspberry Pi server (yes, it's ridiculous)

When I heard about Radxa's Taco—a Raspberry Pi Compute Module 4-powered NAS/router-in-a-box—I knew what must be done.

Load it up with as much SSD storage as I can afford, and see what it can do.

Raspberry Pi CM4 Taco NAS with 48 TB of SSD storage

And after installing five Samsung 870 QVO 8TB SSDs and one Sabrent Rocket Q NVMe SSD—loading up every drive slot on the Taco to the tune of 48TB raw storage—I found out it can actually do a lot! Just... not very fast. At least not compared to a modern desktop.

Special thanks to Lambda for sponsoring this project—I was originally going to put a bunch of the cheapest SSDs I had on hand on the Taco and call it a day, but with Lambda's help I was able to buy the 8TB SSDs to make this the most overpowered Pi storage project ever!

CutiePi - a Raspberry Pi CM4 Linux Tablet

A few weeks ago, I got my hands on an early prototype of the CutiePi.

CutiePi Tablet with Raspberry Pi mug

Unlike many other Pi 'tablet' projects, this one is actually more of a, well, tablet, since it is based on the diminutive Compute Module 4. And because of that, and a custom main board, the CutiePi is less than half as thick as the other decent modern Raspberry Pi tablet on the market, the RasPad—plus it has a cute handle:

CutiePi Back

It has an 8" 1280x800 multi-touch display, a 5000 mAh battery, USB 2.0, USB-C power (you can use the tablet while charging), micro HDMI for an external monitor or TV, and a microphone, speaker, and 5MP 1080p rear-facing camera.

Raspberry Pi Zero 2 powers the Null 2 RetroPie gaming handheld

As a kid, I never had a Game Boy, Game Gear, or any other handheld console. Heck, as luck would have it I've never owned a Nintendo Switch, either.

I've played console and PC games, I've only used handhelds twice: once in middle school, when a friend let me borrow his Game Gear for a day, and last year year when my dad brought over his Nintendo Switch—which my kids quickly commandeered.

I guess out of a sense of jealousy, I decided the first thing I should do with Raspberry Pi's latest hardware, the Pi Zero 2 (see my review here), is build myself a handheld retro gaming console.

Null 2 kit on Tindie

And what better way than with the Null 2 kit (pictured above, from it's Tindie page), a kit integrating off-the-shelf components on a custom PCB, wrapped up nicely in a custom acrylic case.

Look inside the Raspberry Pi Zero 2 W and the RP3A0-AU

Today, Raspberry Pi released their new Zero 2 W, and it includes a new Raspberry Pi-branded chip, labeled RP3A0-AU.

I was able to get early access to the Zero 2, and I have a full review of the device on my YouTube channel, but I wanted to share more of the X-ray images I took of the device to reveal its inner workings, and because I just think they look cool. Also, I paid a bit of money to get these pictures, so might as well share!

First, here's what the Zero 2 W looks like in person:

Raspberry Pi Zero 2 W

And here's what it looks like via X-ray:

Raspberry Pi Zero 2 W - X-ray vision

Getting faster 10 Gbps Ethernet on the Raspberry Pi

If you read the title of this blog post and are thinking, "10 Gbps on a Pi? You're nuts!," well, check out my video on using the ASUS XG-C100C 10G NIC on the Raspberry Pi CM4. Back? Good.

To be clear: it's impossible to route 10 gigabits of total network throughput through any Raspberry Pi on the market today.

ASUS 10G NIC in Raspberry Pi Compute Module 4 IO Board

But it is possible to connect to a 10 gigabit network at 10GBase-T speeds using a Raspberry Pi Compute Module 4 and an appropriate PCI Express 10G NIC. And on my Pi PCI Express site, I documented exactly how I got an ASUS XG-C100C working on the Raspberry Pi. All it takes is a quick recompile of the kernel, and away it goes!

Kubuntu Focus M2 Linux laptop review and MacBook Pro comparison

A few months ago, I replaced my Core i9 MacBook Pro with a Raspberry Pi 4 model B with 8GB of RAM for a day, and I made a video and a blog post about the experience.

Obviously there's a vast difference between a new Core i9 laptop with 32 GB of RAM, a dedicated GPU, and a 2 terabytes of fast storage and a tiny Raspberry Pi running ARM. So it wasn't a fair fight, but I could do a lot of things well enough, and every generation of Pi has gotten better.

Kubuntu Focus M2 Linux laptop

A few weeks ago, someone from Mindshare Management asked me if I'd like to do the same test, but this time with an almost one-for-one replacement laptop: the new Kubuntu Focus M2.

Review video: Check out the video that goes along with this review:

The Raspberry Pi 4 has a fan now - the Case Fan

Last year, I wrote a blog post titled The Raspberry Pi 4 needs a fan.

And in a video to go along with that post, I detailed the process of drilling out a hole in the top of the official Pi 4 case and installing a 5v fan inside.

Raspberry Pi 4 Case with Fan drilled into top of case

But that solution wasn't great. The fan was a little loud and annoying, and would stay on constantly. And who wants to damage the nice-looking Pi Case by putting a hole right in the top?

The Raspberry Pi 400 - Teardown and Review

Today Raspberry Pi Trading announced the Raspberry Pi 400, the latest in the series of small education-focused computers that started with the original Raspberry Pi in 2012.

For years, people have come up with creative ways to hack a Pi into keyboards, like the Original Pi in an old Mitsumi keyboard, or the Pi 3 A+ in an official Pi Keyboard.

But the Pi 400 delivers something many have desired: an official Pi 4 board built right into a Pi Keyboard, in a space- and performance-efficient way.

Raspberry Pi 400 Back Ports - Hero

The Raspberry Pi Compute Module 4 Review

Raspberry Pi Compute Module 4

Introduction

Six years ago, the Raspberry Pi Foundation introduced the Compute Module: a teensy-tiny version of the popular Raspberry Pi model B board.

Between then and now, there have been multiple revisions to the Compute Module, like the 3+ I used in my Raspberry Pi Cluster YouTube series, but they've all had the same basic form factor and a very limited feature set.

But today, that all changes with the fourth generation of the compute module, the Compute Module 4! Here's a size comparison with the previous-generation Compute Module 3+, some other common Pi models, and an SD and microSD card (remember when the original Pi used a full-size SD card?):