cooling

Hacking Pi firmware to get the fastest overclock

Raspberry Pi 5 with dry ice smoke surrounding it

Since boosting my Pi 5 from the default 2.4 GHz clock to 3.14 GHz on Pi Day, I've wanted to go faster. Especially since many other users have topped my Geekbench scores since then :)

In March, Raspberry Pi introduced new firmware that unlocked frequencies above 3,000 MHz for overclocking. This summer, NUMA Emulation patches boosted performance another 5-10% through memory access optimizations.

But even with a golden sample Pi 5, I haven't seen anybody go much beyond 3.1 or 3.2 GHz. The problem seemed to be power supply—the Pi's firmware limits the SoC to a maximum of 1.000V.

Raspberry Pi 5 *can* overclock to 3.14 GHz

...and it's not just for Pi Day.

Raspberry Pi 5 with THRML tower cooler

After posting my deep-dive into the Pi 5's new BCM2712 and RP1 silicon this morning, someone linked me to this GitHub issue: Raspberry Pi 5 cannot overclock beyond 3.0GHz due to firmware limit(?).

For the past few weeks, a few blog readers (most notably, tkaiser—thanks!) commented on PLLs, OPP tables, and DVFS and how something seemed a little off with the 3.0 GHz CPU limit—which was apparently recommended by Broadcom, according to that GitHub issue.

But today, @popcornmix generated a test firmware revision without the 3.0 GHz limit, and zealous overclockers can get to pushing the clocks higher.

Water cooling is overkill for Pi 5

tl;dr: 52Pi and Seeed Studio's water cooling solution for the Raspberry Pi 5 can be fun, and works better than any other solution—but at a steep price, and with a number of annoying quirks.

Ice Pump water cooling block installed on Raspberry Pi 5

A few months ago, 52Pi reached out and asked if they could send a new water cooling kit they were working on for the Raspberry Pi 5. At the time, the hope was we could figure out a way to get very high overclock with adequate cooling.

Unfortunately—for reasons I'll explore more soon—the Pi 5 can't overclock beyond 3.0 GHz (it's not physically possible). Some of why is explained in my blog post Overclocking and Underclocking the Raspberry Pi 5.

But water cooling is still fun, and the product is in production now, so I figured I'd still give it a fair shot, and see if I thought it might be worth buying for certain niche use cases.

The Raspberry Pi 4 has a fan now - the Case Fan

Last year, I wrote a blog post titled The Raspberry Pi 4 needs a fan.

And in a video to go along with that post, I detailed the process of drilling out a hole in the top of the official Pi 4 case and installing a 5v fan inside.

Raspberry Pi 4 Case with Fan drilled into top of case

But that solution wasn't great. The fan was a little loud and annoying, and would stay on constantly. And who wants to damage the nice-looking Pi Case by putting a hole right in the top?

The best way to keep your cool running a Raspberry Pi 4

From home temperature monitoring to a Kubernetes cluster hosting a live Drupal website, I have a lot of experience running Raspberry Pis. I've used every model through the years, and am currently using a mix of A+, 2 model B, and 4 model B Pis.

Stack of Raspberry Pi model B and B+ 2 3 4

The 3 model B+ was the first generation that had me concerned more about cooling (the CPU gets hot!), and the Pi 4's slightly increased performance made that problem even more apparent, as most of my heavier projects resulted in CPU throttling. I've written about how the Raspberry Pi 4 needs a fan, and more recently how it might not.

The Raspberry Pi 4 might not need a fan anymore

tl;dr: After the fall 2019 firmware/bootloader update, the Raspberry Pi 4 can run without throttling inside a case—but only just barely. On the other extreme, the ICE Tower by 52Pi lives up to its name.

Raspberry Pi 4 cooling options including ICE tower cooling fan and a case mod fan
Three options for keeping the Pi 4 cozy: unmodified Pi 4 case, modded case with fan, and the ICE Tower.

A few months ago, I was excited to work on upgrading some of my Raspberry Pi projects to the Raspberry Pi 4; but I found that for the first time, it was necessary to use a fan to actively cool the Pi if used in a case.

Two recent developments prompted me to re-test the Raspberry Pi 4's thermal properties: